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We give an explicit formula which describes the “solution of the T :
problem of the vibrating string with a plane obstacle. This formula
allows us to prove continuous dependence on the data; a regularity
result is given. We prove some results on the convergence of the
penalized problem, and give a numerical scheme.
A few results are given without the requirement that the obstacle

be plane. 4,_ ?
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SIGNIFICANCE AND EXPLANATION

The purpose of this paper is to continue the study of the following
problem: a string is constrained to remain on one side of a material obstacle.
We consider its transverse vibrations, and we assume that, when the string hits
the obstacle, no energy is lost. It was proved in a previous paper that when
the obstacle is concave i.e. has the form of a bowl (with the plane cbstacle
as a limiting case), then there exists a unique solution for a given initial
position and velocity of the string. We prove here that when the initial posi-
tion and velocity are slightly changed, the solution is only slightly changed.
Moreover, if we replace the rigid obstacle by an elastic one, if the obstacle is
plane, and if the initial data are sufficiently reqular, then the solution we
obtain is close to the solution of the original problem. We also give a
numerical scheme for computing the solution.

This subject is a first approach to considering problems of mechanical
vibrations with unilateral constraints; a number of elliptic and parabolic
problems with unilateral constraints have been solved, but very few hyperbolic
problems, i.e. problems describing vibrating mode s such as the above obstacle

problem, have been tackled successfully.
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NEW RESULTS ON THE VIBRATING STRING ! 5
[ WITH A CONTINUOUS OBSTACLE ! b

I
A. Bamberger+
M. Schatzman

I. INTRODUCTION
I.1. pPresentation of the problem and the results.

This paper aims to give some new results on vibrating strings with obstacles. The

e e et

model is the same as in [1], but as it appears necessary to elucidate several points of

the modelization which was exposed there, we shall give it from the baginning.

A 2D A R

We consider the small transverse vibrations of a string that is constrained to be

.

on one side of a material obstacle. Let the transverse displacement at time t of the
material point of the string with coordinate x be denoted by wuf{x,t). If the string
were free, i.e. if there were no obstacle, then u would satisfy the wave equation

Ouz - = .
v utt uxx 0

S NALAL” g I € s

We assume that the obstacle has position ¢(x). We translate the requirement that the
string stay on one side of the obstacle into the inequality

(1) ulx,t) > ¢(x) ¥ ox,t .

When the string does not touch the obstacle, its motion satisfies the wave equation,

{
i
I

and thus

(2) supp Ou < {(x,t)/ulx,t) = ¢(x)}.

We require that the string does not stick to the obstacle; this can be translated as
| 3 Cu >0,

which means that the obstacle does not exert a downwards force on the string.

Notice that (3) is essentially equivalent to subsonic propagation of interactions.

To see this, let t = o(x) a curve which separates a region # of the half :lanc

. . + - ;
R x (0,») in two open regions & and # where llu vanishes. Suryose that o =

b
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and u =u are sufficiently smooth, and that

(4) u(x,0(x)) = ¢(x)
(5) u (x,t) > ¢(x) v o(x,t) . 8,
Then we can compute [lu in the sense of distributions, with ° a test function:
! Ly a0y au o, _
(llu,y) = - (Ht , T—') + (ﬂx ' )=
(8)
(4 - + - -
_ ( u Ju . [ u ) . ) )
| = [Ll ¢ T ](X,J(x)) + . j;—-!(x, (x)) (x)J C(x, t{x))dx.
{
Relation (4) can be differentiated, with respect to x , and implies
+ - + -
Ju Ju Ju u |
7 - = - —_— .
(7) [ = = v(x,O(x)) ' (%) [ pre T ! (x, (x)) .

Introducing (7) into (8), we get:

(x,0 (X)) (L ~ 2 (x)) . {x,  (x))ax.

wt
(Gu,s ) = [ [——-J’—

But hypothesis (4) and (5) ensurc that

Lo+ -
du u
- —— " . {
oy (x,0(x)) -0 and T (x,7(x)) -_ 0.
Therefore, [Ju is non-negative if and only if |o'| is almost cverywhere smaller than 1.

It is not enough to suppose that conditions (1}, (2) and (3) arc satisfied, as
notlhiing has been said of the evolution of the energy of the string during the collision
with the obstacle.

The hypothesis that will be made is that the cnergy is conscrved. This requirement
should be analysed from a mathematical point of view as follows: the condition must be
local, because the propagation properties of hyperbolic cquations suggest it, and it
must be satisficed wherever in the x,t half-plane the free wave cquation is satisfied.
Thus, multiplying by %% the relation
(8) ftu =0 on M,

where ® is an open region such that (8) is satisfied, we obtain a rclation in diverqgence

form
g Pt S SR T . ,
2) i l"l o= o a2 = = in M,
£t Vxl X ot %t
L e ‘u o
The orcerations by which we deduce (9) out of (8) arce valid if Y and = ar locally
squarc=integrable in T - (0, ).
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The energy condition we shall impose is

7 . -
¢ 3 Ju uu
] T ix [2 it )x] =0

du

4 RN
3 3x

3t {]ot

(10)

in the sense of distribution on IR ~ (0,4.

We could alternatively write it as

S dSf(—Zu u
(11) i u X

l Ves =0 .

2
£ ux + ui )

Here, the first component of the vector field S  is the energy density flux, and the

i

second component of the vector field Su is the energy density.

3 -
2 Notice that (10) cannot be deduced by multiplying (3) by T% , as %%- must be

Nz g

expected to be discontinuous on the support of [Cu.
£ FPor initial conditions such that the free solution corresponding to them is locally
M of bounded energy, it was proved in [1] that the Cauchy problem (1)=-(3) and (1ll) possesses

a unique solution if the function ¢ is convex.

The approach which led to condition (11) is essentially a mathematical one; from
the mechanical point of view, one would like to know if (11) implies that the velocity b
of the string after collision is the opposite of the velocity of the string before colli-

sion. The answer is affirmative, but one has to give a meaning to

B ¢ 3
13 (12) f% (x,t + 0)= = 3% (x,t - 0) if (x,t) . sup Cu.
Kt (]

This was the purpose of part vV of [l], where it was shown that if

(o is Lipschitz continuous on IR, with Lipschitz
REY 4
| constant 1 , and o - 0 on IR
Y a, 2 12
. (14) S Cu 6t 1%+ u(x,0){Tdx - Cap) va 0, ¥b 0, vt _b
-a

and if (3) is satisfied, then right- and left- derivatives can be defined almost every=

where on the non characteristic parts of the curve t = o(x),
R torcover, if (1l1) holds, then for all 5 satisfying (13), we have:
*u "\
(15) T )= = (x)) | ase. on ax/) 1t (x) |

-3=
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We shall prove in paragraph II the following explicit formula in the case of the plane
obstacle.
Let w be the free solution of the wave equation
[Dw=0
w(x,0) = uo(x),
wt(x,O) = ul(x).

Let the obstacle be v = 0 , and let the backward wave cone be

o dgf

.t {(x',£*)/0 < t* <t - |x-x'|}.

Let us denote by r  the negative part of a number
r = sup(-r,0) .

Then the solution of the problem (1) - (3) and (1l1) is given by

x,t

ulx,t) = wix,t) + 2 sup{(w(x',t*)) /(x',t") ¢ T_ _}.

This formula shortens considerably a previous proof [{6] of continuous dependence on
data, and is the key for the numerical scheme studied in paragraph III. We shall give
ir paragraph IV a regularity theorem in spaces of bounded variation, in the case of a

gencral concave obstacle.

In paragrapn V, we shall consider the functions u, which solve the problem
{ -

1
Elux -3 (“A -¢) =0
(16) uA(x,O) = uo(x)
! au
{ -t (x,0) = ul(x)

In the first part of this paragraph, we shall prove a weak convergence result, which does
not depend on the shape of ¢y or on the regularity of the initial data. The limit func-
tion will satisfy a set of energy inegualities instead of (l1).

In the second part, we shall assume that the obstacle is plane, and that i%? and
u, are locally of bounded variation. Then the solution of (16) converges strongly in

b (m - m"), and its limit is the unique solution of (1)-( 3) and {11).

1
loc

-l
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1.2. Notations and summary of previous results.
We shall use throughout this paper the following notations and definitions:
V is the set of functions u such that

(7 1 a0 1?4 Iut(x,r)|2)dx <cCla,b) <40 wa,b ¥ t<b

-a

w 1is the free solution of the wave equation:

Ow =0,
(18) w(x,0) = uo(x)
wt(xlo) = ul(x) . -

E 1is the set

E = {(x,t)/w(x,t) < ¢(x)}

I is the domain of influence defined by
+
(19) I= U{Tx't/(x,t) € E}

+ .
where T is the forward wave come {(x',r')/t' >t + [x-x'|}, and its boundary is
’

given by
3T = {(x,r)/t = 1(x)}

(20) where 1 is Lipschitz continuous with Lipschitz constant 1 .
(see [1], Proposition II.3 for the proof of this claim),

The backward wave cone T. is {(x',£')/0 < t' <t - [x—x'|}.

x,t
The characteristic coordinates § and n are given by

X+x =X+r

(21) E=75— n=72-—

with the notation ;(é,n) = z(—%—‘l ’ 5;" ) for all functions of two variables x and t.
: 1 2

We shall 11 bl P t s i . - ™

all call problem (P ) the following problem: given Uy - Hloc(m), uy Lloc(r)

satisfying the compatibility condition

uo(x) > ¢{x)

(22)
u (x) > 0 a.e. on {x]uo(x) = ¢ (x)}
find u in V such that

(1) uzy

(2) supp Ou « {(ultm(x,t) = ¢(x)}

(3) Ou >0




1
| ;(uz + 2 = = i
10) { T Y, ut) + x ( 2uxut) = 0 in the sense
l of distributions in IR x ZIR+
! ukx,O) = u_(x)
(23) °

|
§ lu -
S (x,0) = ul(x).

The precise statement of the results of existence and uniqueness in [1] is as follows:

Xl

Theorem 0. The Problem P possesses a unique solution u if ¥ is non-negative.
Moreover, this solution u is the unique solution of the linear problem

{ u v

] . =
RS RT )
(24) 32-(X,I(x) + 0) = - 25 (x,1(x) = 0) a.w. on {x/t(x) ~0&,1'(x) - 1-.
3t ot
u({x,0) = uo(x)

3u

3

(x,0) = ul(x)

If ¢ 1is the measure defined by
(25) ()= =2 fwt(x,T(x))(l - 1'(x)2) WX, t{x))dx ,
then the solution of (19) is given by
(26) u=w+ &*
where & is the elementary solution of the wave equation with support in the positive

light cone:

[ . .
&="% on 1{(x,t)/t > lef

27)

( & =0 elsevhere.
It will be useful to consider the problems Px £ which are just P_ restricted to the

) :
backward wave cone T; . with initial data given on [x - t, x + t]. Clearly, u is
’

a solution of P_ if and only if it is a solution of P for all x - IR, t >0 .

X, t

The first result on the convergence of the penalty method for the string with an obstacle
was proved by A. Bamberger [2].
An explicit formula for the string with a point obstacle was obtained by L. Amerio

in [3] and by i, Schatzman in {4], with a different argument.

-6
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Continuous dependence on the data and convergence of the penalty method for the

point obstacle are proved in [4]. See also the results of C. Citrini [5], when

regularity assumptions are relaxed.
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II. THE EXPLICIT FORMULA, CONTINUOUS DEPENDENCE ON THE INITIAL DATA !

11.1. The explicit formula for the infinite string.

In the case of the 2zero obstacle {(and more generally, the plane obstacle), the solu-

tion of (P ) can be expressed by an explicit formula. We denote by r = suplr,0) the

a0

negative part of a number.
Theorem 1. The unique solution of P when ¥ = 0 is given by

(28) ulx,t) = wix,t) +2  suwp _ Iwix',t')]
(x',t')eTx N

Remark 2. If the obstacle is plane, i.e., if ¥{x) = ax + 8, then (28) can be

generalized:
(29) ui{x,t) = wix,t) + 2 sup _ Iwix',t') - elx")].
L] 1 T
{(x',t')e x,t 4
To deduce (29) from (28) it is enough to consider u = ¢, and notice that Ty = O. . 7

The proof of Theorem 1 comes in several steps.

The first step is the following result:

Lemma 3. The set where sup{[w(x',t')]_/(x',t') € T; t} does not vanish is the interior
_— '

of the domain of influence I.

Proof. If wix',t') <0 for some (x',t') in the backward cone T; e ! then (x,t)
[

+ ; i 3 .
belongs to the forward cone Tx‘ £ the vertex of which is in the interior of I . Thus
’

(x,t) is in the interior of I . Conversely, if (x,t) belongs to the intericr of I

’
then there exists a point (x',t') in the interior of E such that (x,t) kelongs to

. ; + :
the interior of Tx We can choose this (x',t') such that w(x',t') be strictl:

',t'.
negative, because the set of (x',t') such that w(x',t') < 0 is dense in the intericr

of E . Therefore, sup _[w(x',t')]- >0 . .

' ]
(x',t )rTx't A
Let us define ;
(30) k(x,t) = inf {wlx',t')/(x',t) « T }. :
. |
Then, thanks to Lemma 3, we have, if u is defined by (28)

ulx,t) = wix,t) for t < 1{x),
(31)

u(x,t) wix,t) - 2k{x,t) for t > 1(x) .




!
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Lemma 4. Let uy and v satisfy the compatibility conditions (22), and let I
nonempty. Then the function k satisfies

(32) Ok = 0 in the interior of I

Proof. Letus extend w to the whole plane IR~ R, by solving the (backward) wave eguatisr

wix,0) = uo(x) R

(33) wt(x,O) = ul(x) ’

Ow =0

The assumption that I is not empty implies that, on the line o

wix,7(x)) =0 if |t x| <1

w, (%, (%)) <0 a.e. on {x/|t'(x)] < 1}.

We shall prove that wi(x,t) > 0 for t < 1(x), by essentia

in [1], Theorem IV.2. For the convenience of the reader, let us

Let U = {x/w{x,t(x)) >¢(x)} = U ]ai’bi[
i
where the open sets ]ai’bi[ are the connected components of U

{1] tells us that

(34) 7(x) = min(t(a,) + x=a,, 1(b,) + b, - x), ¥ x
i i i i
Therefore if we set
a, + 1(a;) b, + 1(b,)
£ = i i £ = 1
i VZ i 2
(35) -a, + 1(a,) -b, + 1(b,)
i i . i i
n, = n! =
i % i i)

the line of influence in characteristic coordinates is such that

Y(g) = n, if £« (g, ,8})
(36) * v
Y{&) = [ni, nl] if ¢ = 5{
if Y is the multivalued mapping defined by
. = Q_rl é__:l
n e () 7 o(‘z] .

~9-

for t <0, x: IR.

f influence:

1ly the same argument as

sketch it here.

. Then Lemma II.6 of

¢ [ai,bi]




Let Q(S,n) = f() + g(n), where f and g are in (IR} . From (35), we deduce

1
“loc
£(2) + g(a!) ~ 0 for . < 7 ~ 2' and from (34), f(7) + g(n,) > 0 for

1t = I it =

As we must have f(’i) +g(w£) = = f(ii) + g(ni) = 0 , by definition of U, i

and !, then
i
(37)
Similarly,
(38) g(ni) g(ni) g ¥ on [w;,ni] .

on C , the complement of the set U [Ei,Sil, we have
i
(39} £r() 0 a.e. .

The simplest way to see this is to notice that Y 1is one valued on C , and that
£(5) + g(¥(2)) =0 on C
£(2') + gY(2)) - 0 for ' < &,
Let us evaluate now f£(:Z) + g(1). Suppose first that X(n) = Y-l(n) is one valued.

Then

X (
£(2) + g(n) = g(m) + £x(n) = ] 1, £1(79ds -

(40)

n)
£
1

:
|

) - ] lEmin(zl,x(m)) - £max(s ,6))
‘. i

where the summation is extended to the indices such that [{i,ii] intersects [7,X(n)]}.
We have:

g{n) + £(x(m)) >

X
) v (crygry o«
ool o

As  X(-) 1is one valued, it is not contained in the interior of an interval [‘i.'il.
Thus

min{7!,%(1)) = 7! if 7ot (7,20} # 8 and, it ~ { {7,711,
i i i’ iti

the corresponding term in the sum vanishes. For =~ in [fi,';], the term in the sum is
f(’i) - £() ,
which 1s not positive, by (3.7). Therefore, the cxpression (40) is non-negative for
T ¥4, If we suppose that X(-) = [’,,‘3], we have to study the expression
o
. .’l_’v’j [ -|__’ 3 R | - . .
gl) + £¢( $ i 1Cf (-*)ya ; {f (min( i j) f (max ( it M1
and the result still holds, i.0.:

A Y PR S
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(41) wix,t) > 0 for t < 1(x).
Thanks to (41), we may redefine k as
k(x,t) = inflw(x',t")/t" <t - [x=x'[},
or still, in characteristic coordinates,
(42) K(z,n) = inf{£(€") + g(n*)/e" < € & n' < nl,

Then, it is immediate that

=1

3 (g,n) = inf{£(£")/€* < &} + inf{f(n")/n* < nl,

which proves the claim of Lemma 4. s
We shall now prove that u , defined by (28) satisfies the transmission condition
across the line of influence.

Lemma 5. If u is defined by (28), then almost everywhere on {x/[r'(x)| < 1},

aheaiaa

(44) Aok, +0) = - 2 1 - 0.

Proof. Let A = {x/|T'(x)| < 1}, Then, almost everywhere on A , by Corollary A.2 of [1],

(45) wx(x,r(x)) and wt(x,r(x)) exist.

Let x be a point satisfying (45), and let us denote

wx(x,T(x)) a, wt(x,T(x)) =b, 1'(%x) =m.

Then,
a+mb=0, b<0O ?
and
w(x',t') = a{x'-x) + b(t' - 1(x)) + e(x'=-x, t*' - 1(x})
where
[rTiTs]»o ;(i :) =0.
We have

inf{a(x'-x) + b(t' = 1(x))/(x',t") « T; )= bl = Tx))

and therefore,

b(t = 1(x)) ~ sup{]c(x'=-x,t'=t)|/1(x") st <t - [x-x"|} <
(46)

‘ < k(x,t) ~ bl = t(x)) + [el0,t =~ T(x))].

-11-
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As lr'(x)l < 1 , we have

lim [sup{|e(x'-x,t'-t) /T (x") <t <t - [x=xt|/t = 1(x)]

tvT (X)
and we deduce from (46) that

lim ulx,t) - ulx,7(x)) _ _ w, (%, 7(x))

T (%) t - Tx)

under the assumption (45),

Conclusion of the proof of Theorem 1.

=0

Lemmas 3, 4 and 5 imply that the function u defined by (28) solves the linear

problem (24), up to the condition u e V ., Therefore it remains to check this last condi-

tion. 1If we take into account the formula (43), let us show that k

We know that £ is in Hl (IR); let
loc

f(e) = inf{£(£") /8" < €},
Then, we can compute the derivative of f(&) almost everywhere:

£1(8)

]

0 if  £(£) > £(§) or if £'(8) > 0
(47)

£0(€) = £'(£) if £(&) = £(£) and if £'(£) < O .

We deduce from (47) that f is in HiOC(IR) . Similarly, ¢ dis in

function k which can be written as

E(x+t] ( -xX+t )

V2 V2

will therefore be in V , i.e.

k(x,t) =

2 2 2
f (]kx(x,t)| + |kt(x,t)| )dx < c(a,b) Vab, ¥t <0
-a

and thus u is in Vv ,

~12-

is in Vv .
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IL2. Continuous dependence on the data

1 L2

Corollary 6. The map (uo,ul) + u which to an element of Hloc(m) * loc(m) satisf,ing

the compatibility condition (22) associates the solution of P_ is continuous from

1 2 : .
t
Hloc(lR) x Lloc(IR) equipped with the strong topology to
1,P ) . 2 P o) . 1
wloc([0,+ ); Lloc(l‘R)) n Lloc([0,+ ) Hloc(IR))

equipped with the strong topology, for all finite p .

2

Proof. We have at once the continuity from HiOC(IR) x Lloc(IR) to CO(J.R « ®Y) .
P

1 . .
loc([0,+ ):HIOC(IR)) is defined by the

1,P 2
The topology on W, c([0,+°°), Lloc(IR)) n L

’
o
semi-norms for A,B > O

) = u0,00] + (/B (P + ud)x,01a P HE
0 -a X t

2
lo

qABp (u

The topol on Hl
opology 1o

_ A
P, (ug,u)) = |u0(0)| + ({A (

C(IR) x L c(lR) is defined by the semi-norms for A > O

/2

du_,2
[o] 2 1
Ex + Iull )dax) .

It has been proved in (1], paragraph IV.2 that for solutions of P with zero obstacle

3u 3u '

|E (x,8)| = 3 (x+t,0) |

) 2u T ;

30 (x,t)] = lan (x~t,0) | !

Therefore i
et s e D eeeax = 2 o ]? + Ju]? x,trax <

-a x t A € n - i

(49) 1

A+t duo 2 5 1

< f [E:- + |ull ]dx ¥V A,t >0, a

-A-t i

e e

Let g ABe be the semi-norm

2,5 = v(0,0) + ess sup ¢ [A(lv, 12+ v [ xmant/? . {

t¢ {0,B] -A !
{
Then, (49) implies i
(50) qABm(u) < pA+B(u0 + ul)_ |

n n . P . . a9 ce:
1f (uo,ul) is a sequence of initial data satisfying the compatibility condition (22}

1 2

. ; c.
and converging to (uo,ul) in Hloc(m) x Lloc(]R) , then, as a consequence of (52),
n . 1 +
(51) u -u in H (R x IR} weakly
loc

and moreover, (48) implies that




(52) = x,0
»un 2 ‘U
(53) — (x,t) “dx - | — (x,t)
Gathering (51), (52) and (53), we obtain
- N . 1 .
(54) a cou in H (D I ) strongly.
loe
Thanks to Fubini's theorem, one has from (54)
n I8 ;
(u {=,t), u_ (+,t)) (u_(=,t),u_(+,t)) !
(5%) “ X ) t : x t ]
in (LT (D))T  strongly, for almost all ot T
loc -
The relation (55) together with the estimate
n n n
qAB_(u ) _ sup A+B(ur + ul) +-
i ) n : i o g e ..1’r ‘ . < P f ).
imply that u converges to u 1n the space MIOC((J" ),Lloc(n)) “lor([ )
1
H (IR)) . []
loc
E . . . . . ) 1, ... 2
£ Remark 7. The mapping (uo,ul) u is not continuous to wloc(l"‘ ) Lluc(n))
LL ([O,+~‘~);Hl (I?)) which is the space vV defined in (17).
loc loc
Take for instance the sequence of initial data
R n _ n+l
o~ T 1 n
As these do not deperd on x , the solution of P  is
1 f
‘ PRLLLE N if [
3 n n+l
‘; u (x,t) = { nel n
g , — t-1 if oy
g with the limit
i , -t if t 1
ulx,t) = 4 :
. t- 1 if t 1.
Then we may calculate g " - u)
AB-
n . n
- = .
qAB.(u u) if B el
n . : n
- = FR _—
Y. (u u) 2y 27 if H 1
Thus (" - W does not tend to zert as n tends to infinit, -

if B 1, q

-14=~
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? III.3. Application of the explicit formula to the finite string with fixed ends.
1
) . The explicit formula (29) will allow us to give a simple construction of the solution
of Pf where Pf is the problem of the vibrating string with fixed ends, and obstacle
¥y = =K v . The only mrdificarion with respect to P , is that we shall require u to
. 1 1, 2
be 1n the space L (u,T;hU(H,L)) W (u,T;L {(U,L)) for all T - 0O .
In fact u will be in the space
' 1 1,
LG, s Bieo,0) W (0,05 L2 (0,1)
because we can integrate (10) on any rectangle (0,L}] -« {0,T], and we get the energy
i E-
equality for arbitrary times T
du 2
L 2 . 2 ( .
(56) Plu x,™" + ju (x,T) | T)dx = fL ‘——i + ju 12J dx
i X t o de 1
Let us define
e us erine { ( } \ 1/2
du, 2 )
e="'L’ - + u, P laxd
o T | My ' o
0
Then
: X ~
ulx,t) - uo,0) = f ux(x',t) dx'! - evx I
]
and similarly !
F iu(x,t) - u(L,t)| o evlex
K2
Let . = = - Then
e
(57) ¥t (0,7, ¥x [0, ) (L = L1 , ul(x,t) -K
b and (.u cannot be supported in the strips ([0, ) (L - .,L1} - [0,7). Let us extend
. the initial conditions wu , v to the interval [«.,L + ] by:
ul(-x) = —ui(x) if x [-.,01, i=0,1.
§ ui(L’x) = -ui(L-x) if x - (0,.1, i =0,1.
. Then the corresponding free solution, w is defined on the cone T; L , with the
' 33t
property that
wix,t) = 0 n_t e
'
i ~15=-
* .
: >, S D

-t

e LT
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prev

L+a Uk
-3 0 [ L L-a L
2
Let u be defined on T; by (29); then for x =0, t < a
73t
(58) u(0,t) = w(o,t) + 2 sup {[w(x',t*) + KI }.
_ To,e
But, w(0,t) =0, and T is included in the strip [-a,a) x [0,®), so that w * -¥K

0,t
on this strip, and thus u(0,t) = 0 on [0,a). Analogously, u(L,t) =0 on [0,].

Therefore, (5.8) defined the solution of P on T

£ n(lo,L] x [0,=)).

[l |

-+
r2

N

Let us define by induction the solution of P, on the region Rn given by:

£
( = L L
R = {(x,t) « [0,L] x [0,/ 2+ {2n-1)x - |x - 2‘ <t <
(59) n L L 2
<3+ (n+l)a -|x - shi.
We shall denote by % the function
L L .

o (x) = 3+ (2n=1)ax = jx - 3 { if x . (0,L]

on(x) = on(-x) cn(L + X) = o, (L - x) if x . [0,5].
Suppose we know u(x,on(x)) for x ¢ [0,L]. Let

~l6=




w_{x,0 (x)) = ui{x,0 (x)) if x. {o,L]
n n n i

wn(x,on(x)) = -u(x,on(x)) i€ x . [0, ] |

(60)
w {x,0_(x)) -u(2L - x, 0 (2L = x) if x - {L; L + ] .
n n n .

Y winet e S e

Ow =0
n
The function v is defined in the region
i . on(x) <t < (@n+ Do+ % - |x - % I %X <L+ a.
Let us notice that the symmetry of the initial conditions in (60) implies
(61) wn(o,t) = wn(L,t) =0 for (2n=-1)u < t < (2n+l)a.
Moreover, as u (x,cn(x)) >-K, ¥x-« [0,L] , and as u satisfies the energy condition

(10), we shall have

wn(x,t) > -k for on(x) <t < (2n+lda + - [x| or for

; (62)
o, (x) <t < (2n+l)a + - [L - x][.
Let
; (63) ul(x,t) = wn(x,t) + 2 sup[(wn(x',t') + K)-/on(x') <t <t - (X - x" ] . '
Y !

Thanks to (61) and (62), u satisfies the boundary conditions. Therefore it solves the

; problem of the string with an obstacle on Rn , and the induction can be pursued.

LR,
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I1I. A NUGERICAL SCHEME 4
III.l. A numerical scheme in a backward cone for the zero ohstacle,
et there be given initial data N and ul on the interval  [-T,T]. We seek an
apjroximation to the jroblem ¢ on the backward cone T E
I'I (JIT
T . . ces n n
s S be a =tep, and let us define discretized initial data ui and ul
B {
o tie following formula
G )= = D (el h) = u R Fx-ph) 4 uv’([m) if x {ph, (p+1)h]
{04)
) 1 (G+1)4 4
u'l'(x) = = K ul(x')dx' if x [ph, (p+1)h].,
. L
The corrvsponding free solution W' is given by
. ' X+t '
I b h 4 h '
voAx,t) = o> fu (Xet) o+ u, (x-t) + ! ul(x yax'] .
o ) ’ ‘
x-t
Let us define
. . - i (4 o
(65) W = W Tl‘h,‘ill h o for 0-1—}- n—-]-l—l; .
1,] 2 2 i -2 - 2
- - Lo . .
Then W, 3 satisfies the finite difference relation
. ;
- -h -h {
(66) R T A
1,3 i,3-1 i-1,) i-1,3-1 !
. ~h
Let us define a function u, on our mesh by
7 ~i ! e -
3 “ = 2 max: . 1! S T )" (e,
(67) 1) x(wl,’J,)/ 1, 3% 3. 1t o+ 3t
We could define ;X; alternatively by
’
B i
(68) u =
l‘l}
.h -h -
¥ = , o =w ) )
14 1,3
(€.9) "
¥ = 1f -n 1 N
1,~1 - -
. it . . . R . . )
Laotice that oy 15 not the disaretization of k , but the discretization of k.lI,
Wiere I 1: tie set !oan smaracteristic conrdinates.
~h
Thaegrem <. et u he toe colution of B with zero obhstacle, and let u. . be
B 1,)
Tofpned o (£.7), Then:
: i—l . 145 -
(7 ) max i ; -l ==, =l 1) _Ten
Qs . 2
Cape deperaas nly oon the anitial condition,

~liw-




Moreover, we have the following bounds on the (approximate) characteristic de-~

i

rivatives: ,

erereeg

H h ~h 1 i;
2 (711) N {u._ + u)(x*)dx"|
L i,j i-1,j3 2 (i-1)h ox 1
: (=j+1)h
h h 1
7 - = - 0 .
(72) Iui,j ui,j-ll 3 5 (uOx ul)(xv)d |

. h Cons
Proof. Let us first evaluate ws 5 - wix',t') when (s',t') 1is in the characteristic
’

square centered on (igj-h, 5§J-h), with sides of length hv2 , 1.e.

. . e o i
é—lhix'+t'i£1;—lh and —232—1-hix'—t':_—2‘%—+-1-h :

.

wix',t') - = wi(x',t") -wh(i—_ih,i—+ih) =
i,j 2 2 t
1 ' R < I Ve o h - :
=3 [uo(x + t") uo(lh) + uo(x tY) uo( jh) + !
}
x'+t? ih :
+ u (yddy = f u, (y)dyl. :
x'-t! -jh '
i.,e. f
— x'+t' x'-t'
tpry o ~h 1 n 2 1/2 2 172 <
Jwix',t") wi,jl <3 //2 tf f g+ uy) dy| +| 'f (uy, = u) ay|™ 4
ih ~-jh
L/E T 2 _ 172 _
<3/7 12 {T [y, +u)™ + (- u) eyl * =

RoT 2 2172 !
/2 ({T (ug, + uj)dx) .

We may then deduce from

(73) lwixt, ey -t | < /By T w? + Prant’?
i =72 5 0x 1
that g
Isup{(v;? j)'/i' Zi. 3% 24, i3 2 00 - sup{lw(x*, ")) /0 <t <t - Ix-x'1}] - :
(74) ! :
t T 2 1/2 1
! /B
] /3 ({T (ag + u))dx) . |

h i-7 i+3 .
Let us notice that v, 3 = w( EEJ-h, i%-J-h), because the approximation (64) is

very particular,

This, in turn, gives

h i=3 i+3 T (u2 + uz)dx\]’/2
(75) max |G, . - u(*=Ln, Zdn)| < /R f 0x 1
: i3 i,3 2 2 - Zp

This completes the proof of (70).




We now turn to prove (71) and (72). Let us notice first that if

i‘i"j - min{&'i‘,,j,/i' <i, 3 <3, i'+3' > 00,

We can write k? 3 alternatively as
’

oh . ~h oo 4 s :
(76) ky 5= mln(wi.'j,/l <i, 3" <3,

because we know from (41) that G? 3 >0 for i+j < 0 , as long as we suppose that
’

the domain of influence is not empty.

Relation (76) implies that

M = 2+ )
1,]
where
(78) o= By o+ ),
1,]
and
) = min{" /i < i},
(79)
§"(5) = min{g"(31)/3" < 3}.
Thus, (68) can be written as
-h ~h ah ~h -
oL =w, .+ 2[f (L) + j)
u-l’J wl'J (£ (1) g ()]

if T is not empty. If £°(i) +§°(3) > 0, then £1(i-1) + §°(5) > 0 , and (71)
is immediate. Suppose now that
(80) 101) + M5 <o .
We have two cases: in the first case,
(81) -1 « M >0

Then, necessarily

(82) ) = ) <« Pu-n < M- ]
and thus,

-h_ ~h h.. . h. “h . “h .

ui,j - ui-l,j = f (i) +g () - 2£ (1) - 29 (j) - ]

- D) - ) = -1+ §N) + G- + §R 9.

Thanks to (80) and (82), we get
~h ~h h, . ~h, . h, . Ah, .
j Uiy T ui_1’j| < W) + g+ TG + 6| <
(83)

[ < 1@ - fa-n ). ]




!
H
In the second case,
~h ~h
f (i-1) + g (3) <0,
. sh . h, . . .
if £ (i-1) = £ (i), we have immediately
4 ~h .h h,.
(84) N (P LAY PR LIT Ty
1 1.3 i-1l,)" —
1 If fh(i—l) > fh(i), then, we have (82), and
~ ~h h . h . sh . - . ~h . -
% u? . ~u, .= £ (1) + g (3) - 2f7° (1) - 2gh(j) - fh(l-l) - gh(j) + 2fh(1-1) + Zgh(j) =
3 i,j "i-1.]
9] R
{ = 28"i-1) - ) - M-,
3 and, thanks to (82) we have ]
] ~ ~h h .
3 .- < 1w - fa-n].
: i, i-1,3' —
J From (83), (84) and (85), we deduce
4 ih
3 ~h ~h h h 1,
ki L. = ou W, =W o= 'yax'|.
ki Iul:] ul_lljl —l i,) .1.-1,3| 2 I(iﬁg)h (qu + “11)(x )dx
k- The proof of (72) is analogous. L]
4
;’ We can deduce from (71) and (72) an energy inequality: let io,j0 be given such
8
1 s . . ‘
i that -n < igsdg =m and i, + 3, > 0 . Then we have: 3
] i 3 r
' 5O AR Ly o 2
: i=—jo+l h 1,30 1-1,]0 j=—i0+1 h 10,3 10,3-1 =
(86) i
0
1 2 2 '
<3 .f [|u0xl (x') + |u1| (x')]dx" .
-Joh

il
*
Y




3 III.2 A numerical scheme for the string with fixed ends and a constant obstacle.

We shall use here the inductive construction of paragraph II.3, which we discretize.

Let u and u be given on [0,L], and let

o] 1
2 7ol duel 2 T
(87) c= K = 4 ax |,

A h¢ [ X | I
2 o U ‘ -
# where the obstacle is ¢ (x) = -K - 0 .
i
| Let n be an even integer, and let the step be h o= % ; let u, be the largest
i : 3
L
4 integer such that noh R
4 -
i We discretize the initial data as in (64) for © - ; - n , and we continue them by

periodicity and imparity:

h h .
u (x) = =-u (-x) for -nh - x- 0; r=20,1;
r r 0o =" =
h h
u (x) = -u_ (-x) for nh © x - (n+#n }Yh; r = u,l.
r r -7 - 8}
0,h 3
Wwe define w '~ by ]
{ 0,h h 3
‘ w ' (x,0) = UO(X) —noh X _V(n+nOH1 ]
& | Wl ! h
H (88) { {(x,0) = u;(x) -nh o x o (n+nh
d [ 0,h -
E ‘ oW 0 in Tn n
1 S, G e
¢ and let
i (89) SR LY (e S e B
5 i,j 2 r2 :
? Let
~h ~0,h ~J,h -
( = ' sup! ’ . iy . sty
90) ui,j wi'] + 2 sup (wi CF K /L i, ) 3, 143 0
where i - n+no, j nO, ity o,
- . m,h
3 Let us define a subsct & of Z-Z by 4
; e
E m,h
f 2" = I+ Gmelin on + 2melin ] < (=0« (n=Din, (2m=Din, ] 4
(21) ! ’ ’ !
1 [(2m-1)n0, n o+ (2m+1)nql -[(Bm-l)no, (2m+1)n”].
m,!
The region F o is the discretized equivalent (in 1,3 coordinates) of the

region #" defined by (59}).
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m,h

sh

We define w on the lower boundary of r" by
~m,h _ .n Lo _ _ _ . _
[ wi,j = ui,j for i=n+ (2m l)no, n + (2m l)no <3 < (@2m l)nO R
|
Qm’h = Gh . for j = (2m~1)n_, (2m=1)n_ < i < n + (2m-1)n
i,3 0 o= - 0
(92) 1
! ~m,h ~m,h . )
= = - -1 < 2m+l
! wi,j wj,i for i (2m l)no, (2m )no <3 = (m+ )nO B
| h m,h
[ _for (2m L)n4n < i < (2m+l)n +n, j = -n+(2m-1)n
( i,] n+j,-n+i — 0 - = 0
and in Rm,h , we have
m,h m,h m,h m,h . . . . m,h
= + - £ & -1,3-1 n R
(93) wi,j wi-l,j wi,j—l wi-l,j—l or (i,j) (i-1,3-1) i
. ~h m,h .. i-j
Then, we shall define ui 3 on R n {(i,5)/0 < 5 :_n} by
r
~h _ ~m,h m,h = e i o< o4 Sy oy
(94) Uiy T Wiyt 2 sup{(wi,'j, +K) /i't <4i, ' <3 and (i',j") ¢ R

Of course (94) is the discretization of (63).

Theorem 9. Let uh be defined by (93), and let u be the solution of Pf

with obstacle =K. Then

(95) max |ﬁ},1 - u(i—;ih, i—;’lh)l _<_c‘“‘“l /h

i,J3

’

m,h

h
for (i,j) in the region Rm' defined by (91), where C depends only on the initial condi~

tions. Moreover we have the following bounds on the (approximate) characteristic derivatives:

ih
G- E L e3l f wg, +up xax]
1,] v] (i=1h
(96)
h h 1 (-j+1)h
T S B (u. = u)(x")dx'|
1,3 i,j=1" =2 -3h ox 1

if ug and u, are extended to all IR by periodicity and imparity.

Proof. We shall replace the number o defined in (87) by n h ; for this new value of

0

+ , we can perform the construction of the solution of P as in 1II.3, and we shall

f
m -m,h . m m,h
compare w and W, 3 on the regions R and R .
’
Thanks to Theorem 8, the relation (95) is verified for m = 0 and
L+
o2 /2

c - (2 f (qu + ui)dx)l and the relation (96) is satisfied in Ry
=

Suppose that for a certain constant C , (95) and (96) are satisfied in

-23=
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Then we have

(97) &'.“’r.‘-w'“(i—;lh,i—;ih)l <d"

1i,]

1,h

h . . m-
for i,j on the lower boundary of Rm’ which is the upper boundary of R

Then we have

(98) [v;l:']; B, W) s A 2P

’

because ‘;":';1 , {respectively wm( iglh . 3'—;ll’l)) is the sum of at most five terms
’

- L] L ]
wT:h,, (respectively wm( 1—2—J— h, l—;Lh }) with i',3' on the lower boundary of
0]
L ] v 1l
Rm'h (respectively (1—2—1-— h, l—-?—- h) on the lower boundary of Rm).

If we evaluate now the difference »}‘:’}? - wm(x‘,t') when (x',t') is in the
’
2y y %lh with sides of length hv2 , we have

characteristic square centered on 5

(99) W;'? - WP, en ] < sEMNE (WO, Bn) - WM e
’
but we have for Pf the equivalent of (48), i.e.
ou _ (8u . _ 1 _ - !
IaC(X,t)! = IBF,(’HL'O” = ’72-(qu ul)(x t,0) |,
Ju du _ 1L - _
ISt | = I5neee,00 ] = 1 g, - u) x-t,00 1,
if Yq and u, are extended to all of IR by imparity and periodicity.
Therefore,
m
w 1
[ |E-(x,t)f = f(uox + ul) (x + t,0)],
(100)

1
3 I(UOX - ul) (x=-t,0)

m
ow
1 I-Bn-(x’t) l

Relation (100) allows us to evaluate wm(%lh ,%lh) - wm(x‘,t') ,

mi-j . i+d - Lix 2. 172
(101) % (-—zlh,—zlh) -wix',t )] < VBR (f (g, *+ up)dx)
-
Let us denote by E the number
L+a
2 2
E = _{ (uox + ul)dx .

Gathering relations (97), (99) and (10l1), we obtain:
-h s .
o) . =~ uEdn, HEny| < asc™ + 2/38) A .
i,3 2 2 -
Therefore, if we choose ¢ = 15 + 2/2 E, we have
1

15" + 2/2E < ™

The proof of (96) is immediate, .




|
]

{
i
A . m,h
Remark 10. For (i,j) in R , we have
i+j -
3 2 (2m l)n0
and thus 1
L !
!
. i+] 3 4
" 1+m< (( 5 h)/2n0h)+2. 1
3 Therefore, if ¢ L?»h , l—;—---Lh) converges to (x,t) as h goes to 2ero, we have from %
.. 95) : :
E- (95) N 3 :
3 ~h imj. i+ Zat 2 :
A o) . - u(=dn, Zdny| < ¢ /A j
i,j 2 2 -1 !
for all cl > C , and for all h small enough.
‘ !
1
3 |
I
iy £
|
3
¥
: -
l .
£
§
. ~25~ i
i




i35 St 1ot

%
3

Py

:
3

oy

IV. REGULARITY IN SPACES OF FUNCTION OF LOCALLY BOUNDED VAKIATION
This paragraph is dedicated to proving the following result of regularity for an

arbitrary concave obstacle .

Theorem 10. Let u and u be elements of Hl () and L2 () respectively,
_— s} 1 loc loc
such that
duU
(102) ax and u, are locally of bounded variation.

Suppose that vy and uy satisfy the compatibility condition (22), and that the

obstacle is concave.

Then for all

]

, the function

.Lu
Q- é? (Z,n)
defined on [-r,++) 1is locally of bounded variation, and analogously, for all ° the
function
L
o o (',")

defined on [-:,+«) is locally of bounded variation.
Procf. We retain the notations of I1.1:

U= {x/w(x,1(x)) - 0} =VUlJa,,b [
i'7i

i
f a.+1(a.) b, + i(b,)
| P . SR NS T
i V2 ‘i V2
(35)
-a, + i(a,) -b. + i(b,)
o i i Rt i
{ 1 R S V2
[ v() = if o LD
(36) 4 ' *
| y{(:) = [+, 1 if = 7!
: 1 1 1

c=t(u i,
i it

We have the following representation of the solution:
al ) = £0) + glo) for hoov(e)
(103) . - ~
ul ,0) = £07) + g for . Y()

with the transmission conditions:

(194) 0 + g20)) = FO) + q(v0)) - (0 = Y()) /2

-26=
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(105) £'(2) + g (Y(E)) = =[£'(8) + ¢'(Y(£))] if Y is one valued
and 0 > Y'({) > ==,
If we differentiate (104) with respect to ¢ on C , we get
(106) EV(E) + Y'(E)g (Y (L)) = £74E) + Y'(£)g' (Y (E)) =-7%~v'((E-Y(C))//E)(l-Y'(E))

(notice that Y is decreasing on C , and therefore almost everywhere differentiable).

For Y'({) = 0 , we deduce from (106) that

(107) £00) = £ = et (@ - ().

For 0 > Y*({) > =-», we deduce from (105) and (106) that £'(&) + £'(§) = V2 ¢ (E~-Y(£)

7l

which contains (107). Therefore, we have

(108) Er(e) + £'(8) = V2 ot (g -¥(£) a.e. on C

(

and, differentiating (104) on Cc

(109) £'(6) = £°(2) a.e. on C° .
Let us denote by h the function

; Ju

: (110) h(g) = 3 (&,n)

B where n 1is fixed throughout the end of this proof, and let

£, = sup{E" ¢ X(n)} .

0
Then, for £ < io ’
. h(g) = £(£)
:
5 and £ does not belong to any interval (Ci,ii). ,
&

To evaluate the total variation of h on a given bounded interval I = [a,b]l, we
have to estimate:

[ TV(h;I)=TVv(h;I n (-m,éo)) + Tv(h;C n (£ _,+°)) + Tv(h; ¢ n (& _,+®)) + [h(s +« 0) -
(111) 4 0 0 °
lh(z. - 0)' + v [{hiz! +0) =h{(z! =0) + jhiz, + m - hiz, - 0) 1)
0 < e o i i 3. i
{l/;oi;iib)

According to (108) and (10%), we have:

(TV(T (=, 7))+ TUGRC o (,#9)) + TV(hCT o (£ ,+2)) <

3
(112) ¢ ~ -1 (o))

: . ; STVIED) ¢ TVOZ ¢ ) - E(0)5T)

b3 £-y(£)

By hypothesis, ¢" 1is positive, therefore ¢' 1is increasing; as f & - is in-

; .reasing, the right hand side of (112) is bounded,
& .

-2 7=




The term lh(Eo +0) = h(g, - 0)| is bounded, because (102) ensures that f , ard
therefore £ is locally bounded.
The remaining term in (111) is the sum

(113) ) [[h(g] + 0) = n(g} - 0) + |n(g, + 0) - h(g, - 01,
{izg <t <b}

which could possibly contain an infinite number of terms. Using (108), and (109) we can

write the terms of (113) as

£.-n, grar?
(114) |£(g, + 0) + £(&; = 0) = V2 w'(—§5—i-- 0)| +[£(€] + 0) + £(£] - 0) =3¢t (e 4 0)

But we have the following inequalities, deduced from the definition of the line of influence

and of the intervals liipiil:

£.=n,
1 i i -
f(&i-O)—75¢'(72r—-0)=aiiO
£.-n,
1 i i +
f£(g, + 0) - $il=m—+0) =a; 20
(11s) 1 i 7z 2 .
£(g! - 0) - = so'(gi’ni -0} =b, <0
i vz © VT R
£!=n!
1 S S _t
f(ii +0) - o ¢ (=g +0) =b <0,
We can estimate (114) by
lat v al] o (b + 5] 4k Cler(BE 4 ) g (I gy
a; tagl + by byl v o et = AR
(116)
E! = n! -n'.
i i _ i i
A A G e BN G o o1 .
But

Iaf + aTl + IbT + b7| < Iaf + a7| + |bf - af’ + Iaf +a,| + 'a, = b |
i i i it =" i i i i i i

and using the sign conditions (115),

[at + a7 + |bf + b7 <2]at +al| + bt - af| + ] + a]
1 1 1 1 - 1 1 1 1 1 1

A

(117)

| oL Emv(E) c e
l <4 TV(f(E) - o (——7!-— ): [Li,;i]) .

Carrying (117) and (116) into (113), we obtain:

[[h(:i +0) - h(g} - 0)| + lh(s_i +0) - hig, - 0) 1

)
{i/s <7 <b}
(118) 0=

<A TVIE[5g,68]) + 5 TV .%. o)y (30740
*

=28~
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Here, 56 = sup{g;/ﬁi < b}, The same arqument holds for the other characteristic de-

rivative. The proof of Theorem 10 is complete; notice that we have proved, in fact,

that locally, TV(%% (*,n),I) is a bounded function of n , for all bounded I . L
Remark 11. It is not true that under hypothesis (102), %% (»,t) or %% (+,t) are of

bounded variation for all ¢t .

To see it, let us consider the following example., Let

wix,t) = A-t ~ a(x+t)4 sin —é; if |x + t| <b
(119) X
= A-r if [x + t]| > b,
We choose b such that sin % = 0 , and a such that the curve
(129) t=a-alxet)? sin Lo

X+t

has always a slope lesser than 1 , for |x+t| < b. For this purpose, we differentiate
(120) with respect to x :

3 1 2 1
= ' i ——— - —_— '
t da(l+t') (x+t)” sin % a{x+t)” cos Ty (1+t') ,

and so,
3.2 i
(121) [t'] < a ___ﬁE_%ETT_.
l-a(4b™+b )
Clearly [t'| can be made smaller than 1 if a is sufficiently small.

Then, we choose A large enough to have

w(x,0) = A - ax® sin % >0 for |x| <b.
du
Obviously, 15% = wx(x,O) and u, = wt(x,O) are locally of bounded variation.

Thanks to (121), the line of influence is given by (120). We shall now see that
%% (*,A) is not of bounded variation, The straight line t = A crosses the line of
influence infinitely many times, at the points

X = L A for |-£4 <b, neZ
nn g

and we have

%% (x,A) = -1 ox o ((2ki2)n A (2kil)1 A, ko 3
or if x ((2k11) - A'(2k12) A, ko

%% (x,A) = +1 if x (TEQ%TT; -A, 5%; - A] ’ Xk ~0
or if x . ( 5%; - A, 75§%I7? - A) ’ k<~ 0. L

This function is not of bounded variation on any interval containing zero. -

-29=- /




V. CONVERGENCE OF THE PENALTY METHOD.

V.l. Weak convergence.

This paragraph is dedicated to a general (and unfortunately coarse!) study of

the penalized problem

. 1 -
l La - - (\J‘. ~¢) =0
(122) o ou (x,0) = ug (%)
i )
: i Rl
; { - (x,0) = ul(x)
f where r = sup(-r,0), and v is an arbitrary continuous function of x , and uo, ul

satisfy the compatibility condition (22).

Let us mention that (122) possesses always a unique solution; to see is, it is

enough to write (122) in the form of an integral equation, and to use Picard iterations.

3
5
{

"

Proposition 12. We have the following estimates for the solution u, of (122):

b du, 5 an. 5 su, o suy
et | B , ) 3
; E{ g o)) |7+ [ (x,00) |7 + 20— =5 ) kox)) st (x)1ax <
(123)
du
b 02 2
! < f (175?1 + Iull )dx
a
. for all Lipschitz continuous ¢ with Lipschitz constant 1 such that = -~ 0 on (a,b),
13
% s(a) = o(b) = 0 .
(124) / 5 (, (x* %) = 2 (x'))7 dx'dt’ © Clx,t,ug,u))
o~
x,t

where C does not depend on A,

Proof. (i) Estimate (123).
% We have the identity
‘ - 1 I T R T T
(Cu, ~=(u =-¥)) -t " (- - -T;_) + 5-?;>([—3?\ S s B

{
|
{
; TR R R R

Integrating on the region 1 (x,t)/a “x 2b and G-t - -(x)' , we obtain the

identity

=30~

'
i
i
'
t




N, A

At B g

e v

Ju Ju Ju, du
ib = ot 1 e |2 o0 |2 v 200 (0 (2 =29 G0 () s
du
1 -2 b 0,2 2
+ 5 uy(x,000) = ¢ (x))7) 1dx =f g 17+ fuy1Dax

noticing that (u (x,0) = ¢(x))” = 0 for all x . From here, (123) is immediate.

(ii). Estimate (124).

We integrate Ou, = % (u\ - ¢¥)  on the backward cone T; e
3 ) ,
X+t au\
f Ou,ax'de’ = f (m¢ 't - [x=-x*]) - uy (x',0))dx" -
o x~-t
X,t
" auA Ju
- kvt -ty - == (x -t + tY))at' =
0 9x 3x
" auA aux
= f [—— (x*',t - |x -x'|) + == (x',t - |x - x'P)lax* +
it 9x
x-t
X+t auk auA X+t
+f == e - x=x') - === (x',t - [x-x'])lax' - [ u (x")ax' .
it 9x 1
X Xx-t
Let o(x') = t - |x-x'|. Then
f Dtxx(x'.t')dx'dt' <
é Tx,t
3 X+t auA Ju X+t
< [ =2 (xt,0x") + ot (x)—= (x*,0(x*)Iax’ + [ |u (x')]ax' ,
- ot Ix 1
x-t x-t
and using Schwarz inequality and (123), we obtain
/ l-(u - ¢) dax'at' <
_ A A -
Tx,r_
x+t Ju ou x+t
2
J [—55-(x',o(x')) + c‘(x')js% (x',0(x*'))] dx']1/2/5; +  f |u1(x')|2dx')l/w/3§ <
X=-t x=-t
it X+t du
2 172
c 2T Ju i ]? e =2 ) [Hraxn /2,
- -t 1 dx s

We need definitions of left and right traces of the characteristic derivatives of a

function u .

-31~
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The following results were proved in [l): let u be in V (cf. def, (17)), such
that Cu is a positive measure., Then the function

.
n a—‘,‘ (r',,n)l

is increasing from [-a,®) to Lz(a,b) for all a,b, and similarly
3‘3 . |
roe Y
¢, an (sln)'[c,d]

is increasing from [=c,®) to Lz(c,d) for all c¢,d.

We define
~ X a~
g‘é (£,n) = lim =X (,n + h)
hi0 7
£
2 (g,m= lim 22 (5,0 - h)
(125) ) > hy0o "~
-r .
S (eym) = Lim %% (¢ + h,n)
h+0
et Ju
S (g, = lim 2 (¢ - b,
h+0
WX a~1
The functions %ﬁ; and 3%— are defined for all ¢ not belonging to the null set .,
~r -
and for all n larger than <~£; analogously, the functions %E— and 2%; are defined

for all n not belonging to the null set Nn and for all £ larger than -r.

Proposition V,2 and Corollary v.4 of [1] tell us that

r
u

r

(*,0(*)) ¢ L (IR; (1l + o')dx)

Q
~ “J

o4
[+

l

(s,0(*)) ¢ L (IR; (1 - o’)dx)

(%
c

2
loc
2
loc
(,00)) « L2 (ixfotx) > 01, (1 + :9)ax)
QcC

-5
c Q
2

;

(c,00) + L2 (ixlotx) > 07, (1 - ch)dx).
ocC

-9
o]

Notice that the above traces are not continuous functions of u . We have the following

example:

u (x,t) =
n

I
-
+

!

]
[ad
-
n
"

1~

-

+
S S

]
L
]
-
+

9]
<
b
"
2]
-
+

ju 1 su, 1
Then f;r (x,1) = 75 ¥ x, and —T?-(x,l) = - = ¥x,vn,

¢ -32-
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We may now state the following result of weak convergence of the penalization:

. - 2

Theorem 13, Given initial conditions u_ « Ll (IR) and u, + L (IR) such that
—_— [4] loc 1 loc

uy ¥ and u > 0 a.e. on the set {x|u0(x) = ¢ (x)}, there exists a function u
such that

(126) ue VvV

(127) u>y

(128) u >0

(129) supp Ou <« {(x,t)/ulx,t) = ¢(x)}

b au‘ 2 au” 2
J USE (x,000) |91 + o' (x)) + IW (x,0(x))|“QQ = o*(x)))dx <

3¢
du_ (2
b 2 0
i f (]ul| + W )dx
a
b 39 2 . 2
3 { [ (lalg (x,0(x)) |[“(1 + o' (%)) + a_;n_ (x,0(x)) |“(1 = ' (x))]dx <
du
2 0,2
11,1;& (|ul| +|—dx—| )dx

for all Lipschitz continuous function o , with Lipschitz constant 1 ,

such that ofa) = o(b) =0, o >0 on (a,b).

(131) u{x,0) = uo(x)

Ju .

m (x,0) = ul(x) if uo(x) > ¢ (x)
(132) 4 S_u

m (x,0)] iul(x) if uo(x) = ¢ (x)

proof. From estimates (123) and (124), we can see that we can extract a subsequence

u such that

o

(133) u =*u weakly* in V .

9

The weak * topology on V 1is defined by the semi norms

U’Ufl‘ + Jux f2 S 4fut f3.

where fl,fz and f3 are in Ll(m‘;Lz(IR)) with compact support in T - [, V.
We deduce from (133) that
(134) u *u 1in CO(IR - IR‘) with the compact topology.

b
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Possibly with a new extraction
1 . +
(135) = (u =-v¥) -+ vaguely in M(Ik -~ IR ) the set of measures on IR X% Bi+
Therefore
(136) Su=o -0, _ 5
((u - ) )" ]
xelation (123) gives a bound on -—~——————— ip Lloc and thus 3
U v

To check (129), let (xo,to) be a point such that u(xo,to) : ;(x“); thankse to (134) we

can find a neighborhood U of (xo,to) and a ‘o such that u (x,t) - ¢(x) -

Tl - v x)) W wix,e) - ov

i~0 ’
Therefore

Su =0 for . - u

U o’

and in the limit

‘U‘U =

This proves (129).

To prove (130), let : bhe given, and ‘o be a positive number. Let us define for ;

S 0
{ )
j (x) + if b3 la + o h - »O]
i
(137) 3 (x) = ﬂ X - a + Ty if X la + o T e a Ql
{ -X + b - 0 + if X - [b - o b+ - vO].
Then (123) implies
" b-»U ‘u 5 u o
sode [ (x,- (x)) " (l+ " (x)) + (%, (X)) “(l=--"(x))]ax -
- a+ '
O
b+ du. .
' " [ D2 2
( + ) al (. == ul‘ ) dx

gl
But the left hand side term of (137) can be written as
b= (x)+ " ‘u RPN,

ix N —T+'(X'L) T v (x)) e - (x,t) (1= '(x)) 1t
ar (x)= " '

atcl we can take a4 weak limit i tio s cdbent e dnregral thanks to {133),

-l




Thus we can rewrite {138} without the index u :

ff"cr bTO (2 (0 0] (@eot 0) + 122x,0 (x)) |2 (1=0' (x)) 1ax <
% 35 x,oe OE an » EX ch x_

- a+go .
139)
b+e du y
o} 0 (2 2 :
4 "
< (et 4ok )a—{ U 17+ TuyIrax . 1‘
0 4
Taking <¢' = 0 in (139) and letting ¢" tend to zero, we obtain
b-¢ r r
0 3 2 9 2
[0 U5 o [TQeot ) + |5 (x,000) [P (1m0 (x0)1ax <
ate o5 n
0
b+e du
) 0 0 ;2 2
< 1O g e e
)
Letting &g 9° to zero, we obtain the first relation of (130). If we take <" =0

and let ¢' , then let EO tend to zero, we obtain the second relation of (130).
The initial condition (131) is obviously satisfied. It remains to check (132).
For this purpose, let us take in (137) o(x) = 0 on la,b]. Then, ultimately we get

b . au’ 2 " b, % 2 2
£ ”Tg x,00|% + |S+ix,0) | 1ax _<_£ "'é?(' + Juy [Frax.

Using the identity

r r du 2
Ju 2 Ju 2 Q Ju 2 E
: IBC (X,O)l + | n (x,0)|° = IT;: |+ lsg(x,0+0)| f
E which takes into account (131), we have f
¢ 2
¥ 2 |§3(x,0+0)| dx < fb Ju |2dx .
{ b 3t "a 1
§ As a and b are arbitrary, we have eventually
i
i Ju
T (x,)+)) ] < ]ul(x)] a.e. on IR.
When uo(x) > ¢(x), we have the first part of (132), as locally, v=0u=0. L
du Ju
We shall now study the relation between the strong convergence of Ey and 75} R

and the verification of the energy condition (1l1).
Lemma 14. Let u, be a sequence of solutions of (122), converging weakly * to a solu-

tion u of (126)-(132). Then, u satisfies the energy condition (11) if and only if

ua Ju

’ A Ju 3u . . 2
e and T converge to T and ™ respectively, strongly in Lloc(n{ x [0,®)).




‘
-

(u = ¢)

*1l, converges to v el 6 in M(IR <« =)

Proof. Notice first that as " K X

weakly, for all compact K , and as (uu - ¢)_ converges to zero uniformly on compact
sets, then
-2
(240) ) [t = e))/ulaxtaer » 0
K

for any compact set K ,

Let a,j(x') =h - |x-x' . Then, we have the identity, for any function v :

x+h

ft an [ []% (x,0, (x)) |2(l+oljl(x)) + l-g%(x,oh(x)) |2(1-O;1(X))]dx =
. 0 x-h
(141)
- ttx—x' av 2 X+t t-x+x' 3v 2
= [Tax' | 2|§E(x',t')| at' + [ ax' f 2|ﬁ(x',t')l at' .
x-t 0 X 0

If the limit of the sequence uu satisfies (11), then the value of (141) v = u is

£ X+h duo 2 2
(142) [Fan [ odgl + leglDax;
0 x-h

The value of (141l) for v = u is

x+h du_ 2
t -2
(143) [Fan f (l—dx-ql + |u1|2)dx - f L - )faxae .
0 x=h o<tict-|x-xt| ¥ ¥ i
- - 3u 3u.
And according to (140), the limit of (143) is (142). Therefore, as _a?u (resp. —57" )
an
du 3u . 2 +
converges weakly to 3€ (resp -5-5) in Lloc(lo,m) x R ), and
Ju du
lim | I—ag—]zdx'dt' + |ﬁ|2dx-dt' = | |g—‘£|2dx-dt' + Iig—:tzdx'dt'
0 Ax,t Bx,t Bt BX:t
= ' [] - v =1
where Ax,t {(x',t") ¢ Tx,t/x <o}, Bx,t Tx,t \ Ax,t , we can conclude that the
au Ju u u
convergence of _BEU_ and a—: to —a-g and H is strong.
du 3u 3u 2w
Conversely, if _8?“ (resp. ﬁ) converges strongly to Y (resp. ==), then it is
< an

straightforward to pass to the limit in (11). L
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V.2. Strong convergence when the obstacle is zero and the initial characteristic

derivatives are of bounded variation.

The first step in this study is to notice that if w is an affine function, then the
penalized solution converges to the solution of (P_) which conserves the energy.
Lemma 15, Let there be given initial conditions
u(x,0) = a-bx >0 on | X +tO]

*5"% %o

(144)
ut(x,o) = -c < 0

and suppose that the free solution w(x,t) = a - bx ~ ct is such that
t < .
w(xo, 0) 0

Then the solution u of (122) with initial conditions (144) is given by

A
ul(x,t) = a=-Dbx -~ ct for bx + ct < a ,
/. 2 - T2 2
uA(x,t) = )\(c2 - b )sin E&:;:Eé:::% for a < bx +ct <a+r Vile® - b%)
(145) Ale? - b2)
/ 2
uA(x,t) = bx ~ct - a -~ rv/\(c2 - b2 for bx + ct > a + rr/'(c2 - b)),
. 1 - :
Therefore u, converges strongly in H (T N ) to the solution of Px N
¥0' "0 0’0
Proof. Let us compute the solution of Px € .
070"
E= {(x,t) ¢ T / a-bx - ct <0},
Xo,to

We see at once that the slope of the line a = bx + ct is smaller than 1 , in absolute
value, Therefore I = E , and

ulx,t) = a - bx - ct if a-bx-ct>o0

(146)

u{x,t) bx + ct - a if a=-Dbx-ct~0.

Let us look for the solution of (122) with initial conditions (144) under the -.rm
u\(x,t) = fx(bx + ct) .

Then £ must satisfy the ordinary differential egquation

A

@ -phHe -t oo

with the initial conditions

I
o

f\(z)

U}
1
—

.

f{(a)
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This problem can be solved immediately and give RN oz leo o tne limit oF nin
seqguence u  1s u , and Lemma l4 allows us to oo 1 ode, L]
rRemarx 1o ., Suptose We rejplace the function e Poa Tt s toat
X)) =0 1 f X
(x) i %
1= continuous, strictly decreasing on (=0,
A=) o=

then the penalized jroblem

. 1 N
e C R
S0k, = u (x)
‘ -
: e {x,) = ul(x)

can pe studied as above; we get Theorem 14 with almasc nn oflange dn the procf. o

a phase plane analysis shows easiiy that in the case of initial data (144) tie linm

u. is the function (146). We chose the specific penalization (122) becadse of its sim; lic-

ity. We need an integral solution of the linear Klein~Gordon c¢quaticr with initial valueg

given on a curve t = °'(x). It is the object of the next lemma.
Lemma 17. Let w be a solution of the wave equation on the set § = < (X,t)/:(x)

to - ;x—xol: where o 1is a Lipschitz continuous function with Lipschitz constant
Then the unique solution on § of the problem

;
“u o+ ; us==n

|
(147) { ulx,:(x)) = w(ix,s(x))
i U w .
: = xox)) == (%, (%)) a.e. on -x/;-'"(x), - 1-
is given by
Y N
(148) Wik, t) = wix,t) - == 0 3 (D X wixt,eyaxtat
2 s 3] r—
ST Vo
. X,t
where
s N ~.
(142) Jo(y) = (-13 (X
no-0 n! A
is the Bessel function ]O
- e

it oof

1

e mr o aaad e s




Proof. We verify that if w is a solution of the wave equation in the whole plane,

and if,
_ 0 if ot < o(x)
wix,t) =
wix,t) 1if t > o(x)
then,
(L) = = fwix,000) (¢ (x,000) + 0" (x)9_(x,0(x)))dx +

+ [w e, (x)) + 0" GO (x,0(x)) 19 (x, 0(x))dx.

Solving (147) amounts to find a sclution of

1
Cu + Xu)'{ 0

x,t)/t > o(x)} T

) Ul(x’t)!{(x,t)/t <ox)} °

ulx,o(x)) = wix,o(x))

%% (x,0(x)) = %%—(x,c(x)) a.e. on {x/jo'(x)]| < 1}

which can be written as
- 1
(150) u=w—3\-8*u
where & is the elementary solution of the wave equation defined by

% if t > x

&(x,t) = -
o] elsewhere

The convolution equation (150) has a unique solution given by

o n n
(151) u = Z =1 (* &) *w .
n
n=0 A k=1

By a simple inductive calculation in characteristic coordinates, we obtain:

n
s Y -1
(152) (* Egm = &ML
k=1 ((n=-1)!)
Therefore
* n n /2 2
(-1) * --Lg. L -x
(153) I =2 8 == 558 J C——)
n=1 A
Together with (153), formula (151) gives (149). .
We can now state the theorem for convergence for penalized solutions:
du
Theorem 18, Let ug and Uy be such that = and uy are locally of bounded variation
(154) and suppose they satisfy the compability condition (22). Then the solution

u  of (122 converges to the solution of P when 1 goes to zero.
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Proof. Let us tirst notice that on Ic, the complement of the domain of influence, we

have, if u is the solution of P :

Bu =20 c
on I .
3 U_>_O
4 Therefore
—
u, =u on I

and, in particular,

RIS IR -

uA(x,r(x)) = ulx,1(x)) = w(x,7(x))

du

(153 7;} (r,1(x)) = %& (x,7(x) = 0) = %% (x,7(x)) a.e. on {x/|10(x}]| < 1}

where we recall that T , the line of influence, is Lipschitz continuous, with Lipschitz

DIl it SN S SER IR i -

constant 1 .
We shall now use assumption (154) to obtain more information about the line of
f? influence. We need the following notations: t
k| Q = {tx,6)/x 2 |e]}
k|
3 Q, = {x,0)/¢ > |x|} Q,
: (156)
Qy = {lx,t)/x < -]}
Q, = {(x,t)/t < -lx]|}
; % ! —
Y
!
2
3
‘ We shall denote
(157) %% (x,t;Qi) = lim %% (x+h,t+k) .
(h,k)»0
(h.k)“Qi
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Thanks to (154), %% (x,t;Qi) is defined for 1 < i < 4, and we have the formula
[ r
ow 1 aw w
— . = — b —
(158) 3t (x,t,Ql) = [ 3E (x,t) on (x,0)1 ,

with notations (125). We have analogous formulae for the three other limits.

Lemma 19. Let x be such that 1'(x) is defined and |t'(x)| < 1 ., sSuppose that

2w

(159) nax 3t

(x,t;0.) < 0.
1<i<d4 N

Then there exists a neighborhood (x-¢,x+e) of x such that |[x'-x| < ¢ = 1'(x') has
left and right limits at every point and IT'(x' * 0)[ <1 ;

sup 2w . _
1<ica pr XTTXN)iQ) £ -t <0
Proof. The hypothesis (159) implies that, in a neighborhood N of (x,7(x)):

it 3¢ i) £t <o,
therefore w(x',+) is strictly decreasing for x' close encugh to x , and moreover
if k 1is so chosen that wt(x,r(x)) + k wx(X,T(X)) < 0 , then

w(x + kh,7t(x) + h) <0 .
Thus, there exists a unigue sclution to the problem:

wix',a'(x')) =0
(160}

max(|x-x'|,lc(x') - r(x)l) < o where a 1is a small positive number.
To prove that ¢ 1is identical to T in an interval [x-a',x+a'] where a' may be
smaller than a , we have to check that

[or(x")] <1 a.e, on [x-a',x+a'] .
The function o is continuous indeed, as w is continuous and t' = ¢o(x') is the
unique solution of w(x',t') = 0 in N , We may not directly differentiate the rela-
tion w(x',0(x)')) = 0 , as we do not have the assumptions of the implicit function

theorem. But, with the very same argument as in this theorem, and using notation (157),

and its analogue for %5 , we have
w(x'+h,o(x+h)) = wix,o(x')) + wx(x',c(x');Ql) h +

(161) + W (x',0(%");0.) (a(x'+h) =~ o(x')) + gl(lhl + Jo(x'+h) - o(x") )

for all h such that (h,o(x"+h) - o(x")) . Q1 .
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e

Here ¢ is a function such that

1
lim 1%
ko k0
By a standard argument
- - 8 (I vy,
(162) lim J{x'+h) - ¢ (x') - hx(x (X )'Cl
‘ h J w, (', (x50 )
-0 - t 1

(h,d(X'+h)-u(x'))'Ql

The same result holds in the three other quadrants Q2, Q3 and Q4, and by choosing
adequately small we shall have

wx(x',O(x');Qi)

| |
| v . vy . P P _-xty
| wt(x gix )'Qi) }_ 1-¢ for x=x"| -

and thus
(h,o(x"+h) - 2(x')) - 1 for h > 0 , small enough
th, (x'+h) - (x")) - Q3 for h < 0, |h| small enough
ot (x')| < 1- . a.e. on  [(X— ', x+u']
t(x') = g(x'), and ' has right and left limits at all points of

{X=a®,X+27]. L

Let us compare locally the solution of the linear Klein-Gordon equation (147) to the

solution of an approaching problem with simpler initial data. Let

w_(x_,t )
0" 0
t{x ) =t ’ 1'(X)=m=--———-——-———x .
0 0 00 wt(xO'tO)
TO(X) = tO + m(x-xo),

wo(x,t) = wt(xo,to)(t-to) + wx(xo.to)(x-xo),

uo(x,:o(x)) = wo(x,ro(x)) =0
na W

0 . -9 ) -
—;E-(x,.o(x)) == (x,xo(x)) wt(xo'to)
8y = {(x,t)/t - :O(x)r.

Then:

—— t-t - -x )
m{x o

g 2
- Ji(1- i .
ug(x,t) = Vi (l-m) wt(x()'to) sin 7———2n==—
Ve{l=m )
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with the help of (148), we have

( u(x,t) = uo(x,t) = wix,t) - wo(x,t) -

(163)

2 2
» L [ fren? - tex) L e e : e lagras
; - 5% T_f o, n [w = 1) (x' ") = (wy 150)(x ,t')laxrat, }
X,t

Let us estimate (163) for x and t such that

(164) [x-x_| + ]t—tol <c A

ol

and under the hypothesis that ]r'(xo)l < 1 and that wt(xo,to) and wx(xo,to) are

well-defined. Then: . 1
|wix,t) - wo(x,t)' < o(Ix-xol + [t-tol) = o(/).

To estimate the integral, let us first note that

; ‘w'ls'wo'ls()‘ilw'wo"lsuso'

; This relation comes from the fact that, locally, w - 1SI = -w  and wo * 1so = —w; .

; We define new variables X and T by

." t-t' = T/X

% x-x' = X/% . 1

Then the integral expression in (163) is estimated by:

o[ s (/Tz-xz)llw(x-x/i,t-T/X) -w (x-x/i,t-'r/i)ll (x-XvX,t-T¥%)dXdT.
" 0 0 sus,

T
i 0,0
But:

|w(x—x/§,t-T/X) - wo(x-x¢7,t—T/7)] < o(|x-x/i-x0| + I(t-T/T-tOI) ]
and we have to check that {(X,T) T;O / (x-x/X,t—T/i) ¢« S u SO} is bounded. This set

can be written as:

Tz

L. min
N t A

and, using the fact that Ir'(xo)l < 1, this set is bounded, under the condition (164). j

<

r(x-xfx'),ro(x-x./i)
{(x,’r)/lx! f ];

faFe

Thus, immediately:
(165) lutx,e) - v tx,t) ] = o(/D).
, A consequence of (165) is that, for » sufficiently small, the solution u of (147) is
negative on the set

(166) T

: — 1 {(x,t)/t < (x)},
! Xg,tg + (==) Vs (1=n?) - ‘

-4 3
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This uses the fact that u, < 0 on a neighborhood of xo , 45 was proved in Lemma 19,
Therefore, on the set (166), the solution of the penalized problem (122) is the solu-

tion of the linear problem (147), for ) small enough. We have thus, for (x,t) on the

set (166):

du
aw 1 W

— (x',t') = =— (x',t') - — = (x',t=|x-x'|)ax* -

at ot 2) (x',t-{x—x'hes at

2 2
o1 . /(t-t') - (x=x') . .
ETVo _f JO[ = (t-t') (w + 1) (x,t)dx"dt.

L )

Reasoning as for (165), we can prove, under assumption (164) that

u
H?:—:‘ - aa—:) (x,t)' = o(l) ,
or:
Bux t-t_-m(x-x_)
‘EE-(x't) - wt(xo'to) cos = o(l)

VA (l-mz)

and, in particular

3
1im %) (xo’to + (w—e)v/k(l-mz) = +wt(x ,to) cos (m-¢)
A0 Bt 0
(167)

on {xo/r'(xo) <1 and wt(xo’T(xo)’Qi) <0 ,i=1,...,41.

Analogously
au/\ 3
tg T (xo,to + (m=e)/A(1-m")) = wx(xo,to) cos (n=¢)

(168)
on {xo/r'(xo) <1 and wt(xo,r(xo);Qi) <0, i=1,...,4},

and (167) and (168) in turn imply:

du
. A /. 2
iir; Y (xo,tO + (m=g) /A (l-m")) = wg(xo,to) cos (1-¢) ,

(169)

au  Summar-es
lim -2 (xo,to + (r=¢) )\(l-mz)) =w (x_,t )cos(nm=¢).
A0 n n 0°°0

Therefore, the limit u of u satisfies:
Ju aw
Yy (x,7(x)) = = 3t (x,7(x))

a.e. on {x/]t'(x)] <1},

This proves that u is indeed the solution of P . .

=44
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